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A B S T R A C T   

Workplace charging of Electric Vehicles (EV) is a promising approach for transport decarbonization while 
addressing issues emerging from renewable energy growth. For workplaces, the decision to invest in EV charging 
infrastructure depends on the overall cost of providing this service. This study proposes a novel modelling 
approach to minimize the net annual energy cost of a university campus providing EV charging service using 
optimum capacity solar photovoltaic (PV) systems. The research includes an innovative approach to determine 
the campus EV charging demand and a novel net annual energy cost minimisation method combining PV size 
optimisation and EV charging control. A comprehensive analysis is presented to illustrate the influence of EV 
penetration, charging strategy, charging fees, charger cost and PV generation cost on the campus net annual 
energy cost. The influence of these parameters are also analysed on the optimal PV capacity, power and energy 
demand, and PV self-utilisation. Results show that, by using the proposed method, for 25 % EV penetration, the 
campus’s peak demand is reduced by around 12 % and net annual energy cost is reduced by up to 9.2 % while 
providing free EV charging. The net annual energy cost reduction increases to over 20 % for 100 % EV 
penetration.   

1. Introduction 

1.1. Background 

Australia has pledged to take stronger action on climate change, 
namely, reduce greenhouse gas emissions by 43 % from the 2005 levels 
by 2030 and achieve net-zero emissions by 2050 [1]. To achieve this 
goal, electrification of transportation is inevitable, and electricity will 
likely become the main energy source for road transportation. During 
2019–20, the Australian transport sector had the largest share of energy 
consumption (26.5 %) and accounted for 18 % of Australia’s greenhouse 
gas emissions even with the travel restrictions due to COVID-19 [2,3]. 
Road transport accounted for 72.7 % of total transport energy con-
sumption, out of which small passenger vehicles (cars) accounted for 47 
% of road transport emissions (or about 7.5 % of Australia’s total 
greenhouse emissions) [2,3]. To achieve the decarbonization of trans-
port, Australia intends to increase EV penetration to around 25 % by 
2030 and over 80 % by 2050 [4,5]. Australian Capital Territory has 
officially announced to ban the sale of new fossil fuel based cars by 2035 

[6]. From 2021, more positive policies have been introduced by state 
governments to further support EV growth, including financial in-
centives for EV purchase and investment in charging infrastructure [7]. 
On the other side, most carmakers around the world have also made 
public commitments to electrification in line with the goal of decar-
bonization [7]. For example, the timelines to become 100 % electric 
have been set by several carmakers: Jaguar Land Rover (2025), Mazda 
(2030), Nissan (early 2030s), and Honda (2040) [7]. Moreover, the 
world has begun to witness the emergence of carmakers exclusively 
dedicated to producing electric vehicles, such as the Automobile Joint 
Venture Group known as TOGG [8]. However, if the increased electricity 
demand due to EV charging is met by traditional thermal power stations, 
the goal of transport decarbonization cannot be achieved. 

In Australia, with the strong growth of renewable energy sources, the 
issues caused by low direct use of renewable generation become 
apparent year by year. In 2021, renewable energy sources provided 32.5 
% of Australia’s electricity generation [9]. 37.2 % of this renewable 
electricity is generated by rooftop solar PV (24.9 %) and large-scale solar 
PV (12.3 %), making solar the largest contributor to renewable elec-
tricity generation in Australia. However, fossil fuel still accounted for 93 
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% of Australia’s primary energy mix in 2019–20 [2], and the "duck 
curve" phenomenon caused by the growing solar generation has already 
become a challenge for renewable development and decarbonization. 
The 17 Sustainable Development Goals (SDG) of the United Nations [10] 
and the harms caused by fossil fuels [11] are summarized in Fig. 1. 
Clearly, the impacts of using fossil fuels are impeding the progress to-
wards SDG in many ways, particularly in the economic and environ-
mental spheres. Fig. 2 shows the overall electricity demand profile of the 
Australian National Electricity Market (NEM) in 2010–20 [12]. The high 
solar generation has led to a significant decrease in grid power demand 
during the daytime period. Then, in the evening, as solar generation 
goes down and people return home, the grid power demand increases 
dramatically. The duck curve will exacerbate if more PV generation 
enters the grid, and the evening demand increases further due to the 
home charging of the growing number of EVs. 

Workplace charging of EVs can be a sensible approach to mitigate the 
above problems and has gained attention in recent years. It has been 
observed in some parts of the world that workplace charging can reduce 
people’s reliance on home charging [13]. In Canada, workplace 
charging contributed to the reduction of home EV charging from 90 % to 
72 % between 2014 and 2019, with free workplace charging accounting 
for 80 % of the cases. Free workplace charging helps reduce household 
energy cost [14] and influences EV owners to change their unregulated 
charging behaviour. The potential benefits of workplace charging 

include: 1) charging of EVs with renewable energy, 2) increasing the 
direct utilisation of local renewable energy generation (without entering 
the grid), 3) reducing home charging of EVs and thus avoiding the in-
crease of grid peak demand during the evening, 4) encouraging EV up-
take among private vehicle owners, and 5) bringing us one step closer to 
green building goals. However, from the perspective of property owners, 
workplace charging-related costs are the key factors that determine 
whether to provide this service, which mainly include: 1) capital cost of 
the EV charging infrastructure, 2) cost of energy used for EV charging, 
and 3) cost of the on-site solar PV system. 

This study proposes an innovative overall energy cost optimisation 
method for a university campus, which combines EV charging control 
with campus PV system capacity optimisation. Fig. 3 shows the config-
uration of the Campus Energy Management System used in this study. 
The optimisation model is established based on a real campus energy 
management system at the Mawson Lakes Campus of the University of 
South Australia (UniSA). The existing campus energy management 
system is marked with a grid background, and the optimised parts are 
highlighted within the red dashed rectangles. The existing PV integrated 
campus energy management system was completed in 2019 based on 
economic analysis that considered PV cost, campus energy consumption 
and grid electricity costs at that time. It did not include an assessment of 
energy demand for EV charging. With the expected increase in EV 
charging demand and the reduction in PV costs, optimisation of the 

List of nomenclature 

Abbreviations 
EV Electric Vehicle 
LCOE Levelized Cost of Energy 
PSO Particle Swarm Optimisation 
PV Photovoltaic 
UniSA University of South Australia 

Indices 
m/d/t Index of month/day/time interval 
k Index of individual EV 

Parameters and Variables 
PEV

d,t Aggregated EV charging power in time interval t of day d 
ACCHGR Annual cost of EV chargers 
ACG Annual cost of grid electricity consumption 
ACPV Annual cost of PV generation 
AMCCHGR Annual maintenance cost of EV chargers 
AREV Annual revenue generated from EV charging fees 
TAR

k,d Arrival time of k-th EV in day d 
BD Battery degradation factor 
CCCHGR Capital cost of a single EV charger 
Pk,d,t Charging power of k-th EV in time interval t of day d 
TCH

k,d Charging start time of k-th EV in day d 
TDE

k,d Departure time of k-th EV in day d 
λ Electricity tariff 
BCk EV battery capacity of k-th EV 
ηEV EV charging efficiency 
λEV EV charging tariff 
EE EV energy economy 
PF EV penetration factor 
PEX

d,t , PIM
d,t Export/import power to/from the grid in time interval t of 

day d 
FiT Feed-in-tariff 
ICAPPV_CR Installed capacity of current PV system 
ICAPPV Installed capacity of PV system 
r Interest rate 

LCOEPV LCOE for PV generation 
Y Life span of EV charger 
LF Loss factor on electricity bill 
SoCMAX Maximum state of charge of EV battery 
SoCMIN Minimum state of charge of EV battery 
MCG Monthly cost of grid electricity consumption 
AECNET Net annual energy cost of total electricity consumption 
Dm Number of days in month m 
Dy Number of days in year y 
NEV Number of EVs 
T Number of time intervals in a day 
M Number of months in a year 
PIM_AY Peak power corresponding to Anytime Demand 
PIM_SR Peak power corresponding to Summer Demand 
PC

d,t Power demand from Campus load in time interval t of day d 
PΔ

d,t Power difference between supply and demand 
PPV PU

d,t PV output per unit of installed capacity in time interval t of 
day d 

PRA
k Rated charging power of k-th EV 

a Ratio of the number of EVs parked to the number of 
campus parking bays 

SFd Scaling-down factor for EV charging demand 
SC, SS Self-consumption, self-sufficiency 
ΩNEV Set of EVs 
ΩDm Set of days in month m 
ΩDy Set of days in year y 
ΩEC Set of electricity tariffs for energy consumption 
ΩM Set of months in a year 
ΩT Set of time intervals in a day 
ΩTPK Set of time intervals during peak period in a day 
ΩTOFF Set of time intervals during off-peak period in a day 
Δt Simulation time interval 
SoCk,d,t State of charge of k-th EV in time interval t of day d 
DISTk,d Travel distance of k-th EV in day d 
PPV CR

d,t Output power for the currently installed PV system in time 
interval t of day d  
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campus energy system is required to enable the current campus energy 
management system to achieve optimal economic performance while 
facilitating workplace charging and contributing to Australia’s carbon 
reduction goals. 

1.2. Literature review 

The integration of PV and EV in the energy management system of a 

workplace has been a popular topic within the power system and 
renewable energy fields in recent years. To the best of the authors’ 
knowledge, no existing study combines workplace EV charging control 
with PV capacity optimisation to minimize workplace electricity costs. 
Furthermore, the impacts of EV charging strategies on optimal PV sizing, 
and the joint impacts of these strategies and PV optimisation on the 
energy cost and renewable energy utilisation have not been studied for 
workplaces previously. A summary of the existing studies, their objec-
tives and limitations are given in Table 1. The remainder of this section 
presents a review of these studies. 

The study in Ref. [15] presents an optimal system schedule for a 
campus micro gird by comparing different energy management strate-
gies to reduce operational cost and increase self-consumption of 
renewable energy. And the study in Ref. [16] proposes components’ 
capacity optimisation method to minimize total operating cost and in-
vestigates the impacts of various financial incentives for a campus micro 
gird. However, EV charging demand is not considered in Refs. [15,16]. 
Integrating PV generation and EV charging demand into buildings [17], 
examines the energy and economic performance of various 

Sustainable Development Goals (SDG)

1: No poverty
2: Zero hunger
3: Good health and well-being
4: Quality education
5: Gender equality
10: Reduced inequalities
16: Peace, justice and strong institutions
17: Partnerships for the goals

7: Affordable and clean energy
8: Decent work and economic growth
9: Industry, innovation and infrastructure
11: Sustainable cities and communities
12: Responsible consumption and

production

6: Clean water and sanitation
13: Climate action
14: Life below water
15: Life on land

Harms of Fossil Fuels

1: Ocean acidification
2: Extreme weather
3: Sea level rise

4: Air pollution
5: Water pollution
6: Plastic pollution
7: Oil spills

8: Health issue

Process

Impede

Social Economic Environmental

Climate Environmental Health

Fig. 1. United Nations’ Sustainable Development Goals (SDG) and the harms caused by fossil fuels [10,11].  

Fig. 2. Duck curve in Australia 2010–2020 [12].  

PV

Grid

EV

Campus Load

Campus Energy
Management

System

Optimise PV size EV charging control

Smart
Meter

Smart
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Fig. 3. Configuration of the campus energy management system.  
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configurations of the energy management system. For commercial 
buildings [18], analyses the environmental, energy and economic im-
pacts of increasing EV penetration. However, only a fixed PV capacity is 
used in Refs. [17,18], and EV charging control is not considered. 

To achieve the net-zero-energy target for office buildings, an energy 
management method including EV charging control is proposed in 
Ref. [19], and the energy and economic performances are assessed. In 
Ref. [20], to minimize the daily energy consumption cost, EV charging 
schemes and energy management strategies are proposed for a 
grid-connected smart building considering photovoltaics using the de-
mand response method. From the perspective of commercial building 
owners [21], proposes a real-time management method for EV charging 
to maximize the profit from providing the charging services. Based on 
Time-of-Use tariff, a method of optimising power priority is used in 
Ref. [22] to minimize the daily cost of electricity consumption for a 
campus microgrid. In Ref. [23], the effects of three energy management 
strategies and various charging schemes are examined for two charging 
rates to reduce the operational cost of a bus charging station. A 
multi-objective method combining EV charging control, system energy 
management and off-peak electricity tariff is proposed in Ref. [24], 
aiming to release the network energy congestion. Although EV charging 
strategies in presence of renewable generation have been investigated in 
the studies mentioned above, none of these studies has considered PV 
capacity optimisation. 

Although PV sizing techniques have been employed by some re-
searchers to optimise EV and PV integrated systems, EV charging control 
is not considered in these studies. Reference [25] presents a study that 
assesses the energy and environmental performance for an academic 
institution, and performs cost analysis to find the most economic system 
configuration. A planning and optimisation method for campus EV 

fast-charging station is proposed in Ref. [26] to achieve maximum 
economic and environmental benefits; however, the PV generation is 
only used to charge EVs and the campus energy consumption is not 
considered. To maximize renewable utilisation, minimize CO2 emission 
and reduce operating costs, a PV optimisation method for the campus is 
proposed in Ref. [27]; however, this study only considers the charging 
demand of campus electric buses. In Ref. [28], four configurations with 
PV sizing are analysed to achieve maximum self-consumption of PV 
energy and system autonomy for a campus PV-EV charging station; 
however, this study is focused on lightweight EVs’ charging demand and 
does not present economic analysis. 

Combining the optimal PV sizing and smart EV charging [29], pre-
sents a study on workplace charging stations aiming at improving the 
system’s self-consumption and self-sufficiency; however, the solar PV 
output is only used for EV charging and the local loads of the workplace 
are not considered. 

1.3. Contributions 

The aim of this study is to optimise the PV system in a university 
campus considering increasing EV charging demand, and to perform 
economic as well as energy and power flow analysis. The main contri-
butions of the paper are.  

1) Propose a novel net annual energy cost (net AEC) minimisation 
method for a campus combining EV charging control with PV ca-
pacity optimisation.  

2) Develop a new modelling approach for the estimation of campus EV 
charging demand throughout the year. This modelling approach is 
built on the vehicle parking distribution extracted from the Victorian 

Table 1 
Summary of objectives, key features and limitations of the existing studies.  

Ref. Objectives of the study Features included 

PV 
sizing 

EV 
control 

Others 

[15]  1) Reduce operational cost  
2) Increase self-consumption of Distribution Generation 

⨯ No EV – 

[16] Minimize total operating cost ✓ – 

[17] Examine energy and economic performance ⨯ ⨯ – 
[18] Environmental, energy and economic analysis – 

[19]  1) Net or nearly zero-energy target  
2) Energy and economic assessment 

⨯ ✓ – 

[20] Minimize daily system cost 24-hour simulation 
only 

[21] Maximize profit of charging service – 
[22] Minimize daily electricity consumption cost – 
[23] Minimize operational cost of bus charging station – 
[24]  1) Exam techno-economic feasibility  

2) Release energy congestion  
3) Minimize energy-based operational cost 

– 

[25]  1) Assess energy generation  
2) Reduce carbon emission  
3) Analyse cost-benefit 

✓ ⨯ – 

[26] Maximize economic and environmental benefit for fast charging station PV is used only to 
charge EV 

[27]  1) Maximum usage of PV to charge EVs  
2) Minimize CO2 emission  
3) Reduce operating cost 

Electric bus only 

[28]  1) Maximize self-consumption of PV energy  
2) Maximize autonomy 

Lightweight EVs 
(13.8 kWh) 

[29] Optimise self-consumption and self-sufficiency ✓ ✓ PV is used to only 
charge EV 

This 
study  

1) Minimize net annual energy cost with free EV charging service  
2) Analyse the influence of EV penetration, EV charging strategy, EV charging fees, EV charger subsidies, and PV 

generation cost on the net annual energy cost, optimal PV size, power and energy demands, and PV self- 
consumption and self-sufficiency of the campus  

3) Perform year-round simulation and reveal seasonal impacts on optimisation 

✓ ✓ –  
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Integrated Survey of Travel and Activity (VISTA) [30] and validated 
against real year-round vehicle parking data collected from an 
Australian university campus. The approach considers the impact of 
working and non-working days during both teaching and 
non-teaching periods on the number of vehicles parked on the 
campus.  

3) Present comprehensive cost optimisation results and critical analysis 
for the University of South Australia’s Mawson Lakes Campus Energy 
Management System using the actual electricity billing mechanism 
for a ‘High Voltage connection customer’. 

New findings from this study include the influence of EV penetration, 
EV charging strategy, EV charging fees, EV charger subsidies and PV 
generation cost on the campus’s net AEC, optimal PV size, power and 
energy demand, PV self-consumption and self-sufficiency. Using the 
campus load and PV generation data, simulation is conducted for the full 
year to incorporate the effects of seasonal variations. The proposed 
method is expected to facilitate cost-effective integration of workplace 
EV charging with optimally sized PV. The proposed models are appli-
cable to any campus or workplace provided the relevant campus/ 
workplace data are supplied to the proposed optimisation algorithm. 

1.4. Paper organisation 

The remainder of this paper is organized as follows: Section 2 pre-
sents the existing PV integrated campus energy management system in 
UniSA Mawson Lakes campus and the current electricity billing mech-
anism. Section 3 presents the overall optimisation model, the cost-based 
objective function and the factors used to assess the local utilisation 
(self-consumption and self-sufficiency) of renewable energy. Section 4 
presents the modelling of the EV usage demand, electricity consumption 
and various EV charging strategies. In Section 5, the optimisation results 
for different charging strategies are compared. It also presents the power 
flow analysis of the campus energy management system, the seasonal 
impacts and various sensitivity analysis using key system parameters. 
Finally, Section 6 concludes the paper’s achievements, discusses the 
limitations and recommends future works. 

2. Existing PV system and billing mechanism 

2.1. Campus PV generation and energy consumption 

The existing solar PV system in UniSA’s Mawson Lakes Campus 

consists of rooftop solar panels on 18 buildings and ground-mounted 
solar panels. A section of the ground-mounted panels is shown in 
Fig. 4. The PV output is used to supply the campus load and excess PV 
energy, if any, is exported to the grid. Thus, the PV generation reduces 
the campus power demand and the amount of energy imported from the 
grid and therefore reduces the campus’s energy cost. 

The installed AC capacity of the campus PV system is 1365 kW, and 
Fig. 5 shows the power flow of the campus energy management system 
for one week in March (end of summer) and one week in August 
(winter). The peak load demand of the campus is around 2300 kW. The 
campus PV system can meet some of this demand during the day and 
very small amount of power is exported to the grid because there isn’t 
much excess PV generation. Fig. 5 illustrates the variations in load de-
mand between weekdays and weekends as well as the seasonal varia-
tions. The typical summer curve shown in Fig. 5 (a) is taken from March 
when there is abundant sunlight on most of the days and the PV system 
output can almost reach its rated capacity at noon. In contrast, as shown 
in Fig. 5 (b), fewer days in winter have good solar radiation and the solar 
generation has significantly lower peaks than in summer, so the rated PV 
output cannot be reached. Compared to the workdays, the campus load 
demand during the weekends (days 6 and 7) is relatively low and re-
mains almost at the same level as night-time. The PV power output per 
kW of installed PV capacity during time interval t of day d (PPV PU

d,t ) can 
be obtained from the current campus PV output (PPV CR

d,t ) and the current 
installed PV capacity (ICAPPV CR). 

PPV PU
d,t = PPV CR

d,t

/
ICAPPV CR;∀t ∈ ΩT ,∀d ∈ ΩDy (1)  

where, ΩT and ΩDy represent the set of time intervals in a day and the set 
of days in year y. 

2.2. Electricity billing mechanism 

The complete electricity bill of the Mawson Lakes campus for a 
month can be found in Table A.1 of the Appendix. There are fourteen 
charge items grouped into five categories. The ‘Charges’ column lists all 
fourteen items, the next two columns show the energy ‘Usage’ and ‘Unit 
Price’ (λ) for each item, and the last two columns show the ‘Loss Factor’ 
and the total charge for each item. As can be seen from Table A.1, the 
campus electricity costs comprise the following.  

• Items 1, 2, 3, 4, 5, 11 and 13 represent charges based on the total 
energy consumption 

Fig. 4. Picture of part of the UniSA Mawson Lakes Campus PV system.  
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• Items 6 and 7 account for charges due to peak and off-peak energy 
consumption respectively  

• Items 8 and 9 are charges for kVA demand  
• Items 10 and 12 represent daily network and market operator 

charges respectively  
• Item 14 is the annual meter charge. 

Note that the university is classified as a business customer. As such, 
it is subject to the High Voltage Business Annual Demand (HVAD) 
charges shown in items 6− 10 of Table A.1. Currently, the campus does 
not earn any revenue for excess PV energy exported to the grid, that is, 
the feed-in-tariff (FiT) is zero. The monthly variation in the retail price of 
electricity λ1 (refer to item 1 in Table A.1) is shown in Fig. A.1 with the 
annual average value presented by the red dashed line. In this study, the 
2021 rates are used for λ1. To investigate the effects of varying λ1 on the 
optimisation results, sensitivity analysis is performed in the results 
section. For clarity, the tariff structures of items 6, 7, 8 and 9 from the 
bill of Table A.1 are illustrated in Fig. A.2 of the Appendix along with a 
brief explanation. 

The mathematical expression for calculating the monthly cost (MCG) 
of campus electricity consumption from the grid is represented by (2). 

MCG(m)=
∑

d∈ΩDm

∑

t∈ΩT

(
PIM

d,t × Δt
)
×

∑

j∈ΩDEC

(
LFj×λj

)
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞

energy consumption cost

+

∑

d∈ΩDm

⎛

⎝
∑

t∈ΩTPK

PIM
d,t × Δt × λ6 +

∑

t∈ΩTOFF

PIM
d,t × Δt × λ7

⎞

⎠

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
peak− offpeak energy consumption cost

+

[
PIM SR × λ8 + PIM AY × λ9

]
× Dm

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
power demand cost

+

[
λ10 + λ12 +

(
λ14

/
Dy

)]
× Dm

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
operator,network & meter charge

−
∑

d∈ΩDm

∑

t∈ΩT

(
PEX

d,t × Δt × FiT
)⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞

energy exporting revenue

(2)  

where, ΩDEC = {1,2, 3,4, 5, 11,13}. Δt is the simulation time interval 
(30 min in this study) and LF is the corresponding loss factor. PIM

d,t and PEX
d,t 

represent the power imported/exported from/to the grid in time interval 
t of day d, respectively. m, d and t are the indices for months, days and 
time intervals, respectively. T is the number of time intervals in a day, 
and Dm is the number of days in month m. ΩDm represents the set of days 
in month m. Referring to Fig. A.2 of the Appendix, ΩTPK and ΩTOFF 

represent the set of time intervals during the peak and off-peak periods 
for billing items 6 and 7, respectively; PIN SR and PIN AY are contracted 
peak Summer Demand and Anytime Demand for billing items 8 and 9, 

respectively. 
The annual cost (ACG) of campus grid electricity consumption is the 

sum of the twelve monthly costs (MCG), as shown in (3). Here, M is the 
number of months in the year and ΩM is the set of months. 

ACG =
∑

m∈ΩM

MCG(m) (3) 

Clearly, the billing mechanism for relatively large workplaces such 
as a university campus is relatively complex, and a number of factors 
affect the campus electricity cost. At the same time, the cost and avail-
ability of adequate PV-generated energy to meet future growth in EV 
charging demand will impact upon the campus electricity costs. 
Therefore, there is a need to consider realistic EV charging demand and 
charging strategies to develop rigorous analytical methods for the 
optimisation of campus PV capacity so that future EV growth can be 
supported without escalating the overall electricity costs of the campus. 

3. Optimisation method 

Fig. 6 shows the overall flow chart of the optimisation method that 
uses an objective function to achieve the minimum net annual energy 
cost (net AEC) by finding the optimal PV size. The technical and eco-
nomic parameters used in this study are given later in Section 5. In this 
study, the optimisation model is implemented using the built-in PSO 
solver in MATLAB running on a Windows PC having an Intel Core i5- 
8500T Processor and 4 GB RAM. Other optimisation algorithms can 
also be used, such as Genetic Algorithm and Firefly Algorithm [31]. The 
reasons for choosing PSO for this study include, but are not limited to, a 
straightforward syntax for modelling power system flow control, effec-
tive memory utilisation and stable performance of the optimisation so-
lution (largely independent of the problem size and nonlinearity) [31]. 
The PSO solver has been successfully applied in many studies to solve 
optimisation problems in power systems [32–34]. 

3.1. Objective function 

The model aims to minimize the net annual energy cost of the 
campus electricity consumption (AECNET), and the installed PV capacity 
(ICAPPV) is used as the decision variable. The objective function is rep-
resented by (4). It includes the annual cost of grid electricity con-
sumption (ACG) given by (3), the annual cost of PV generation (ACPV), 
the annual cost of EV chargers (ACCHGR), and the annual revenue from 
the EV charging fees collected (AREV). 

Min
{

AECNET ( ICAPPV) } =

Min
{

ACG + ACPV ( ICAPPV)+ ACCHGR − AREV } (4)  

subject to 
{

System constraints
EV charging strategies . 

Fig. 5. Campus load and existing PV generation in (a) March – summer and (b) August – winter.  
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where, the calculation of ACG is done using (2) and (3), and the 
remaining terms are calculated using (5) – (7). 

ACPV ( ICAPPV) =
∑

d∈ΩDy

∑

t∈ΩT

(
PPV

d,t × Δt
)
× LCOEPV

(5)  

ACCHGR = NEV × a ×

[

CCCHGR ×
(1 + r)Y

× r
(1 + r)Y

− 1
+ AMCCHGR

]

(6)  

AREV =
∑

d∈ΩDy

∑

t∈ΩT

(
PEV

d,t × Δt
)
× λEV

(7)  

where, LCOEPV is the Levelized Cost of Energy (LCOE) for PV generation 
and PPV

d,t is the PV output power in time interval t of day d given by (8). 
NEV is the number of EVs, a is the coefficient used to calculate the 
number of chargers required to support a certain number of EVs. CCCHGR 

and AMCCHGR represent the capital cost and annual maintenance cost of 
a single EV charger respectively. The annual investment cost of each EV 

charger is calculated using the capital recovery factor (CRF) which de-
pends on the interest rate (r) and the expected life span of the EV charger 
(Y years) [35]. λEV is the EV charging fee, and PEV

d,t is the aggregated EV 
charging power in time interval t of day d. The expression for PEV

d,t is 
introduced in Section 4.2. 

PPV
d,t = PPV PU

d,t × ICAPPV ; ∀t ∈ ΩT , ∀d ∈ ΩDy (8) 

Clearly, PPV
d,t is calculated using the PV generation per unit (PPV PU

d,t ) 
given by (1) and the PV capacity (ICAPPV), which is the optimisation 
decision variable. Here, the PV capacity is taken as the capacity on the 
AC side. 

3.2. System constraints 

The power balance constraints are shown in (9) and (10). Here, PC
d,t 

represents the power demand from the campus load in time interval t of 
day d. If the combined campus and EV load demand is higher than the 
PV output, the power difference (PΔ

d,t) will be imported from the grid; 
however, if there is excess PV generation, the power difference will be 
exported to the grid. 

PΔ
d,t=

(
PC

d,t + PEV
d,t

)
− P

PV

d,t
;∀t ∈ ΩT ,∀d ∈ ΩDy (9)  

⎧
⎨

⎩

PIM
d,t = PΔ

d,t, if PΔ
d,t > 0; ∀t ∈ ΩT , ∀d ∈ ΩDy

PEX
d,t = − PΔ

d,t, if PΔ
d,t ≤ 0; ∀t ∈ ΩT , ∀d ∈ ΩDy

(10)  

where, PIM
d,t × PEX

d,t = 0, because import and export cannot occur simul-
taneously. 

3.3. Renewable energy utilisation 

Self-consumption (SC) and self-sufficiency (SS) are used as indicators 
of utilisation of the PV system integrated into the campus. The SC is 
defined by (11) as the ratio of the PV energy consumed locally to the 
total PV generation. The SS is defined by (12) as the ratio of PV energy 
consumed locally to the total local load demand. 

SC =

⎡

⎣
∑

d∈ΩDy

∑

t∈ΩT

(
PPV

d,t − PEX
d,t

)
× Δt

⎤

⎦

/⎛

⎝
∑

d∈ΩDy

∑

t∈ΩT

PPV
d,t × Δt

⎞

⎠× 100%

(11)  

SS =

⎡

⎣
∑

d∈ΩDy

∑

t∈ΩT

(
PPV

d,t − PEX
d,t

)
× Δt

⎤

⎦

/⎡

⎣
∑

d∈ΩDy

∑

t∈ΩT

(
PC

d,t + PEV
d,t

)
× Δt

⎤

⎦× 100%

(12)  

4. Electric vehicle charging model 

The EV charging model is implemented using the steps illustrated in 
the flowchart of Fig. 7 whereby the aggregated EV charging demand of 
the campus is determined from the raw input data. As shown in Fig. 7, 
the input data consist of three parts: (1) the first column involves the 
actual parking data from a campus of the Monash University in the 
greater Melbourne area, (2) the second column includes vehicle travel 
data from VISTA [30], and (3) the remaining columns include the 
technical parameters of the EV, EV penetration, the campus load and PV 
generation data. Real vehicle parking data for UniSA’s Mawson Lakes 
campus was not available. Therefore, workplace vehicle data from the 
Victorian Integrated Survey of Travel and Activity (VISTA) [30] is used 
to estimate the probability distribution of vehicle parking in the Mawson 
Lakes campus. The parking probability distribution is used to calculate 
the number of chargers required to charge the EVs parked on the 
Mawson Lakes campus. The Monash campus parking data is used to 

Fig. 6. Overall flowchart of the proposed optimisation method.  
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validate the probability distribution of the campus vehicle parking ob-
tained from the VISTA data, and to calculate the scaling factor for EV 
charging demand on different types of days, for example, working versus 
non-working days. Based on the third group of input data (EV penetra-
tion, technical EV parameters, campus load and PV generation), the EV 
usage profile (workplace arrival/departure time and daily travel dis-
tance) is created individually for each EV using the probability distri-
bution extracted from the VISTA data. This is then used to evaluate three 
alternative EV charging strategies (Uncontrolled, Smooth and Smart) by 
calculating the aggregated EV charging demand. The outputs of the EV 
model are the required number of EV chargers and the aggregated EV 
charging demand on campus. 

4.1. EV usage profile 

Monte Carlo simulation is used to generate the daily usage profile of 
each EV throughout the year. The details of the experimental methods 
and related datasets are given in the accompanying paper to be sub-
mitted to the Data-in-Brief journal. The method is briefly introduced 
next. 

As stated previously, the raw vehicle travel dataset is sourced from 
the Victorian Integrated Survey of Travel and Activity (VISTA) [30]. It is 
assumed that EVs have the same usage demand as conventional private 
vehicles. Fig. 8 (a) presents the probability distribution of daily travel 
distance obtained from the raw VISTA data, and Fig. 8 (b) presents 
probability distribution of workplace vehicle arrival and departure 
times. In these two figures, 5 km and half-an-hour are used as the dis-
tance interval and time interval respectively. 

Based on the EV arrival and departure distributions of Fig. 8 (b), the 
cumulative distributions of EV arrival and departure can be calculated, 
and the cumulative distribution of EV parking can be obtained as shown 
in Fig. 9. Based on that, the number of EV chargers required to meet the 
EV charging demand can be determined. Based on the VISTA dataset, the 
highest number of workplace EV parking occurs at noon (about 69 %). 
Therefore, to meet the charging needs of all EV users, the number of EV 
chargers should be greater than or equal to 69 % of the entire EV fleet (a 
= 69 %). Here, the impact of the parking location on the charging de-
mand is not considered. 

The suitability of the above vehicle probability distributions for use 
in a university campus is ascertained by comparing them with actual 
parking data collected from a real university campus. Here, the parking 
data collected from the Monash University’s Clayton campus for 2021 is 
used. The profiles of vehicle parking for Non-Working Days, Non- 
Semester Working Days and Semester Working Days are shown in 
Fig. 10 (a)-(c) respectively. Each coloured line represents the number of 
vehicles on different days and the black line with square markers rep-
resents the mean. Comparison of Figs. 9 and 10 reveal that the proba-
bility distributions of vehicle parking obtained from the VISTA data 
have similar patterns to those of the actual vehicle parking profiles for 
the Monash University’s Clayton campus. In addition, the impact of non- 
workdays and non-semester versus semester workdays respectively on 
the number of vehicles parked on campus can be estimated from Fig. 10 
(a), (b), and (c) respectively. The maximum average number of parked 
vehicles for non-workday, non-semester workday and semester workday 
were found to be 13, 778 and 2031, respectively. 

Based on the above verification, using the probability distribution 

Fig. 7. Flowchart of the proposed EV charging model.  

Fig. 8. Probability distribution of (a) daily travel distance, (b) workplace vehicle arrival and departure times.  
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obtained from the VISTA dataset, the year-round EV usage profile is 
created individually for the desired number of EVs. In this study, the 
total parking capacity of the Mawson Lakes campus (874 parking bays) 
is considered to be the maximum EV number and represents 100 % 
penetration. 

4.2. Aggregated EV charging demand 

The aggregated EV charging demand (PEV
d,t ) in time interval t of day 

d is calculated using (13) over a one-year period. A penetration factor 
(PF) is introduced to represent the charging demands for various EV 
penetration levels, where PF = 1 represents 100 % EV penetration. 

PEV
d,t =

⎛

⎝
∑

k∈ΩNEV

Pk,d,t

⎞

⎠× SFd × PF;

∀t ∈ ΩT ,∀d ∈ ΩDy

(13)  

where Pk,d,t is the charging power of the k-th EV in time t of day d. First, 
PEV

d,t is calculated assuming that every day of the year is a semester 
workday. This is multiplied by a scaling-down factor (SFd) to determine 
the actual EV charging demand for each day depending on whether it is a 
non-workday, a semester workday or a non-semester workday. Based on 
the results shown in Fig. 10, the values of SFd are 0.6 %, 38.3 % and 100 
% for non-workday, non-semester workday and semester workday, 
respectively. The semester schedule can be seen from the 2021 academic 
calendar of UniSA as shown in Table A.2 of the Appendix, and the 
schedule of working days is the same as that of the state of South 
Australia for 2021 [36]. 

Given the daily travel distance, the EV battery’s State of Charge 
(SoC) upon arrival at campus parking can be calculated using (14). 

SoCk,d

(
TAR

k,d

)
= SoCk,d

(
TDE

k,d

)
−
(
DISTk,d × EE

)/
(BCk × BD);

∀k ∈ ΩNEV , ∀d ∈ ΩDy

(14)  

where TAR
k,d and TDE

k,d represent the arrival and departure times of the k-th 
EV in day d, respectively. DISTk,d is the travel distance of k-th EV in day 
d and EE is the EV energy economy. BCk is the battery capacity of the k-th 
EV, and BD is the simplified degradation factor for battery capacity 

fading. 
As EVs are charged during the parking period (TAR

k,d ≤ t ≤ TDE
k,d), the 

SoC level of the k-th EV in time interval t of day d is calculated using 
(15). 

SoCk,d,t = SoCk,d,(t− 1) +
(
Pk,d,t × Δt

)/
(BCk × BD) ;

∀k ∈ ΩNEV ,∀t ∈ ΩT ,∀d ∈ ΩDy

(15) 

The EV charging constraints are expressed by (16). The EV charging 
power cannot be higher than the rated charging power PRA

k , and the 
lower limit is 0 because vehicle-to-grid power flow is not considered in 
this study. The EV SoC should satisfy the maximum and minimum limits 
expressed by (16). 
⎧
⎨

⎩

0 ≤ Pk,d,t ≤ PRA
k

SoCMIN ≤ SoCk,d,t ≤ SoCMAX ;∀k ∈ ΩNEV ,∀t ∈ ΩT ,∀d ∈ ΩDy (16)  

4.3. Charging strategy 

The aggregated EV charging demand will significantly affect the 
campus load demand. In this study, only campus-to-vehicle charging is 
allowed, which means vehicle-to-campus or vehicle-to-grid power flows 
are not considered. The three EV charging strategies analysed in this 
study are described below. 

4.3.1. Uncontrolled charging 
For uncontrolled charging, each EV will begin charging at its rated 

charging power when it arrives at the parking lot as shown in (17). It is 
assumed that the EV is charged with the goal of achieving fully charged 
state by the departure time. 

TCH
k,d = TAR

k,d ;∀k ∈ ΩNEV , ∀d ∈ ΩDy (17)  

where TCH
k,d represents the charging start time of the k-th EV in day d. 

4.3.2. Smooth charging 
Under the uncontrolled charging strategy, the commencement of EV 

charging events will be concentrated during the morning peak arrival 
period, which will lead to a surge in the aggregated charging power 

Fig. 9. Cumulative distribution of EV arrival, parking and departure.  

Fig. 10. Number of parking vehicles from Monash data for (a) Non-Working Days, (b) Non-Semester Working Days, and (c) Semester Working Days.  
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demand. To avoid excessive power demand due to EV charging while 
considering the parking preferences of EV users, a smooth charging 
strategy is adopted and its impacts on the optimisation results and the 
system performance will be presented in Section 5. For each EV, 
charging begins immediately upon arrival as expressed by (17). How-
ever, the charging power is calculated using the required charging en-
ergy and the EV parking duration as expressed by (18). Here, ηEV is the 
EV charging efficiency. 

Pk,d,t =

[
SoCMAX − SoCk,d

(
TAR

k,d

) ]
× (BCk × BD)

[
TDE

k,d − TAR
k,d

]
× ηEV

;

∀k ∈ ΩNEV , ∀t ∈ ΩT , ∀d ∈ ΩDy

(18) 

Fig. 11 compares the campus EV charging demand profiles for un-
controlled and smooth charging under 100 % EV penetration. It is clear 
that the profiles for uncontrolled and smooth EV charging demands have 
patterns similar to the EV arrival distribution of Fig. 8 (b) and the EV 
parking distribution of Fig. 9, respectively. Under the smooth charging 
strategy, the peak EV charging demand is reduced to almost half of that 
for uncontrolled charging. 

4.3.3. Smart charging 
The smart charging strategy is a simple one, requiring minimal control 

signal communication. Fig. 12 illustrates this strategy using the months 
of January and July as examples. The strategy involves the following 
steps.  

a) Estimate the monthly excess PV generated energy by comparing the 
monthly average PV output profile and the monthly average campus 
load profile; 

b) Calculate the scale-factor by comparing the energy required for un-
controlled EV charging and the excess PV energy for each month;  

c) Create an EV charging profile for smart charging by reshaping the 
uncontrolled EV charging profile to follow the excess PV generation 
profile as closely as possible. This is to ensure maximum possible 
utilisation of PV generated energy. 

5. Results and analysis 

5.1. Campus case studies 

The proposed methods are tested using year-round simulation with a 
half-hourly time interval. The number of simulation time intervals for 
2021 is 365 days × 48 half-hours = 17,520. Table 2 lists the 4 cases 
(Cases 1–4) that are used to demonstrate the efficacy of the proposed 
optimisation modelling approach and the various EV charging strate-
gies. Case 1 represents the existing PV capacity with uncontrolled EV 
charging, and Case 2− 4 represent the three different charging strategies 
where PV capacity is optimised in each case using the proposed 

Fig. 11. Charging demand profiles for uncontrolled and smooth EV charging.  

Fig. 12. Illustration of smart EV charging.  

Table 2 
Household energy system configurations.  

Case EV charging PV size 

1 Uncontrolled Existing 
2 Uncontrolled Optimised 
3 Smooth Optimised 
4 Smart Optimised  

Table 3 
Economic and technical parameters used in this study.  

Applicable to Parameters’ values 

PV LCOEPV = $0.06/kWh 
EV ηpen = 25 %, ηEV = 90 %, ηee = 0.164 kWh/km 

Pra=7.2 kW, BC=40 kWh, Y = 10 years 
SoCMIN = 0.2, SoCMAX = 0.95, CCEV

chgr = $3000 per charger 
Project r = 3 %, FiT = $0/kWh  
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optimisation method presented in Section 3. 
Unless stated otherwise, the economic and technical parameters 

listed in Table 3 are used throughout this study. The interest rate is set to 
3 %. Unless stated otherwise, the workplace charging is assumed to be 
free and the EV penetration is assumed to be 25 %, which is expected to 
be reached in Australia by 2030 [4]. For a mid-scale solar PV system 
(100 kW–5 MW), the LCOE is assumed to be $0.06/kWh including 
capital cost and operation and maintenance (O&M) cost [37]. The Level 
2 EV charger with a rated power of 7.2 kW is used, which is the pre-
dominant charger type for workplaces and other destinations [38]. 
Maximum and minimum EV battery SoC is set to 0.95 and 0.2 respec-
tively. The technical parameters of the EV (battery capacity, charging 
efficiency and energy economy) are sourced from the Nissan Leaf [39]. 
The capital cost of a 7.2 kW EV charger was around $3000 in 2022 in 
Australia [40]. As the values of some of the economic and technical 
parameters may vary by region and country, sensitivity analysis is per-
formed where appropriate to illustrate the impacts of these variations. 

5.2. Optimal PV size and net annual energy cost 

When EV charging is provided for free, Table 4 compares the results 
for optimal PV capacity and net annual energy cost (net AEC) for the 4 
cases listed in Table 2. The changes in net AEC, Summer Demand and 
Anytime Demand have been calculated for Cases 2− 4 using Case 1 as a 
reference. The Summer Demand and Anytime Demand (refer to items 8 
and 9 on the bill in Table A.1) are the contracted kVA demand values 
that are negotiated at the beginning of each billing year based on the 
actual demand values in the previous year. 

Table 4 shows that when EV charging is introduced under the 
existing PV capacity of 1365 kW (Case 1), the net AEC is around $1.87 
million. The optimised PV capacity in each of the cases (2− 4) is more 
than double the currently installed PV capacity, and therefore the 
overall PV energy generation cost is much higher. Still, there is a sig-
nificant reduction in net AEC in each of the cases (2− 4) even though the 
campus does not earn any revenue from the EV charging services or from 
the energy it exports to the grid. The optimisation of PV also has sig-
nificant effects on peak power reduction. The smart EV charging strategy 
(Case 4) offers the highest reduction in net AEC (9.2 %), and peak power 
demand reductions of 8.4 % (Summer) and 15.9 % (Anytime). The above 
results did not consider the EV charger maintenance cost. The optimi-
sation results for Case 4 have been reproduced with the maintenance 
cost of EV charger ranging from $100 to $400 per year. These results are 
shown as Case 4+ in Table 4. In Case 4+, the optimal capacity of the PV 

remains the same as that for Case 4. The net AECs increase with 
increasing EV charger maintenance costs, however the net AECs for Case 
4+ are still lower than that for Case 1 (without PV optimisation). 

The last two columns of Table 4 show the annual imported and 
exported energies for all cases. Without PV optimisation (Case 1), the 
annual imported energy is ~8.4 GWh and the annual exported energy is 
9 MWh. The corresponding self-consumption and self-sufficiency, as 
calculated using (11) and (12), are 99.7 % and 10.3 % respectively. For 
the three optimised cases (2− 4), the imported energy decreases by 
nearly 22 % to ~6.5 GWh. This means that the higher values of the 
optimised PV capacities are able to supply more energy to meet the local 
campus load demand and the EV charging demand, however much 
higher amount of excess PV energy is generated and exported compared 
to Case 1. Consequently, for Case 2− 4, the self-consumption decreases to 
around 81.2%–82.2 % and self-sufficiency increases to around 18.4%– 
19.3 %. In future if an energy storage system is added to the campus 
EMS, then this excess PV generation can be stored to meet the campus 
demand when sufficient sunlight isn’t available. 

Assuming 100 % EV penetration, Table 5 presents the optimisation 
results when various charging fees are introduced for the smart charging 
strategy (shown as Case 4*) and compares with the results for uncon-
trolled charging under the existing PV capacity (shown as Case 1*). Due 
to increased EV penetration, both the charging demand and the number 
of charger installations have increased. Consequently, the net AEC for 
Case 1* increases to around $2.18 million compared to $1.87 million for 
Case 1 reported in Table 4 when EV penetration was 25 %. For smart 
charging (Case 4*), the optimal PV capacity increases to 3846 kW and the 
net AEC for free EV charging decreases by 10.4 % compared to Case 1*. 
Introducing an EV charging fee of $0.1/kWh can reduce the net AEC by 
15.6 % compared to Case 1*and an EV charging fee of $0.2/kWh can 
reduce it by 20.8 %. 

Comparing the smart charging Cases 4 and 4* from Tables 4 and 5 
respectively, it is clear that for free EV charging, the net annual energy 
cost of the campus increases by 14.3 % as the EV penetration increases 
from 25 % to 100 %. If the university charges $0.2/kWh for EV charging, 
then the net annual energy cost of the campus for 100 % penetration 
(last row in Table 5) is almost the same as that for 25 % penetration with 
free charging (Case 4 in Table 4). In the Australian economic context, this 
is a very encouraging result for organisations intending to provide EV 
charging service in the future. 

Table 4 
Optimisation results for 25% penetration with free EV charging.  

Case PV size 
(kW) 

Maintenance cost of each 
EV charger ($/year) 

Net annual energy 
cost ($/year) 

Change in net 
annual energy cost 
(%) 

Change in 
Summer Demand 
(%) 

Change in 
Anytime Demand 
(%) 

Imported energy 
(MWh/year) 

Exported energy 
(MWh/year) 

1 1365 0 1,867,837 – – – 8418 9 
2 3126 1,719,950 − 8.4 − 12.2 − 11.9 6588 1012 
3 3153 1,712,867 − 8.8 − 11.3 − 19.2 6532 998 
4 3165 1,705,915 − 9.2 − 8.4 − 15.9 6486 972 

4þ 3165 100 1,721,015 − 8.6 − 8.4 − 15.9 6486 972 
200 1,736,115 − 7.7 
300 1,751,215 − 6.8 
400 1,766,315 − 6.0  

Table 5 
Optimisation results for 100 % penetration with various EV charging fees.  

Case PV size (kW) EV charging fee ($/kWh) Net annual energy cost ($/year) Change in net annual energy cost (%) 

1* 1365 Free 2,177,658 – 
4* 3846 Free 1,950,246 − 10.4 

0.1 1,837,128 − 15.6 
0.2 1,724,010 − 20.8  
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5.3. Power flow analysis 

With 25 % EV penetration, Fig. 13 shows the power flow for the smart 
EV charging strategy (Case 4) for a week during the semester period. 
Fig. 13 (a) shows that in summer (e.g., March) the peak campus demand 
increases to around 3000 kW, and a large portion of the energy demand 
due to campus load and EV charging is met by the solar PV. The highest 
imported power is around 1300 kW and occurs during the night. The 
highest exported power of 1700 kW occurs during the weekend due to 
low campus load and low EV charging demand. Fig. 13 (b) shows that in 
winter (e.g., August), although PV output is much less than that in 
summer, there is excess PV generation for significant parts of the day. 
However, spikes in imported power of up to 1600 kW can be seen. 

5.4. Sensitivity analysis 

5.4.1. Impacts of PV cost and EV penetration on optimal PV capacity and 
net annual energy cost 

With varying EV penetration and varying LCOE of PV, the variations 
of net annual energy cost (net AEC) and optimal PV capacity for Cases 2 
and 4 are represented in Fig. 14 by the colour bar and the dashed red 
lines, respectively. At a fixed LCOE of PV, the optimal PV capacity in-
creases with higher EV penetration leading to increases in campus net 
AEC. For a certain EV penetration, declining LCOE of PV increases the 
optimal PV capacity and decreases net AEC. Comparing Fig. 14 (a) with 
Fig. 14 (b), although the smart charging strategy (Case 4) requires higher 
PV capacity, a lower net AEC can be achieved. For example, if PV LCOE 
is $0.08/kWh and EV penetration is 60 %, then the optimal PV capacities 

Fig. 13. Power flow of Campus Energy Management System for a week during the semester period for Case 4 in (a) summer and (b) winter.  

Fig. 14. Variation of net annual energy cost against PV LCOE and EV penetration for (a) Case 2 and (b) Case 4.  
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are around 2850 kW and 3150 kW for Cases 2 and 4 respectively, and the 
net AECs are $1.95 million and $1.92 million respectively. 

5.4.2. Impacts of electricity retail price on net annual energy cost 
The retail price of electricity (λ1 in the bill shown in Table A.1) may 

fluctuate each year due to factors such as primary energy prices, interest 
rates etc., although the seasonal pattern of retail electricity prices re-
mains similar. With 25 % EV penetration, Fig. 15 illustrates the sensi-
tivity of net annual energy cost (line graph) and optimal PV capacity 
(bar chart) to varying λ1 for Case 4, where 0 % indicates the retail 
electricity price in 2021. The optimal PV capacity and net AEC are 
represented by blue bars and the red line respectively. As shown, the 
optimal PV capacity increases with higher retail price leading to an in-
crease in the net AEC; on the contrary, if the retail price of electricity 
becomes lower then both the optimal PV capacity and the net AEC 
decrease. For example, with a 10 % reduction in λ1, the optimal PV 
capacity reduces to around 3100 kW and the net AEC reduces to $1.65 
million. 

5.4.3. Impacts of EV charger cost and EV charging fee on net annual energy 
cost 

All results in this section are based on 25 % EV penetration. EV 
charger subsidies have been introduced in several Australian states as 
part of their EV promotion schemes to keep charging facilities in step 
with the growth of EVs. Fig. 16 (a) and Fig. 16 (b) illustrate the sensi-
tivity of net annual energy cost (net AEC) to varying EV charger capital 
costs and varying EV charging fees for the uncontrolled (Case 2) and the 
smart EV charging (Case 4) strategies respectively. The net AEC increases 
with higher EV charger capital costs and decreases with higher EV 
charging fees. For example, compared with the results in Tables 4 and if 
the EV charger capital cost decreases from $3000 to $2000/unit and an 
EV charging fee of $0.1/kWh is introduced then the net AEC for un-
controlled charging (Case 2) reduces from around $1.72 million (see 

Table 4) to approximately $1.67 million. Under the same scenario, the 
net AEC for smart charging decreases from approximately $1.71 million 
(see Table 4) to around $1.65 million. Although Fig. 16 (a) and Fig. 16 
(b) show almost the same pattern, the smart EV charging strategy (Case 4) 
offers a lower net AEC under a given EV charger capital cost and a given 
EV charging fee. 

5.4.4. Impact of PV size on campus energy transaction and cost 
Some workplaces and campuses may not have sufficient space 

available to install large capacity optimally sized PV, while others may 
have the space available to install even larger PV systems. To illustrate 
the impact of non-optimal PV capacities, Fig. 17 presents the campus’s 
energy economy, energy usage and PV utilisation for varying PV ca-
pacity for Case 4. Fig. 17 (a) shows that the net annual energy cost re-
duces initially with increasing PV capacity. The lowest net AEC 
(approximately $1.7 million) occurs at a PV capacity of around 3100 
kW, which is consistent with the optimisation results presented in Sec-
tion 5.2. Increasing the PV capacity above this value increases the net 
AEC, because the increased excess PV energy exported to the grid does 
not earn any revenue due to zero Feed-in-Tariff (FiT). Fig. 17 (b) shows 
the variation of imported energy and PV utilisation with varying PV 
capacity. When the PV size increases from the current capacity (1365 
kW) to 5000 kW, the annual imported energy decreases by almost 30 % 
(from around 8400 MWh/year to less than 6000 MWh/year). Besides, 
self-consumption decreases from nearly 100 % to less than 60 %, self- 
sufficiency increases from around 10 % to over 20 %. Note that when 
PV size is larger than ~4000 kW, the changes of self-consumption and 
self-sufficiency slow down, because PV can only provide power for the 
Campus when there is sunlight and cannot support the campus load 
during the rest of the time. 

The seasonal variations in the campus’s net monthly energy cost are 
presented in Fig. 18 by comparing the net energy costs for the months of 
January and July with the average monthly cost. The net annual energy 
cost (net AEC) shown in Fig. 17 is used to calculate the average monthly 
cost. Fig. 18 shows that the lowest average monthly cost (around 
$141,000) occurs at around Point A, where the PV size is 3100 kW. 
January is a typical summer month with plenty of solar irradiation and 
has a relatively lower retail price of electricity (see Fig. A.1 of the Ap-
pendix). The optimal PV size required to achieve the lowest net monthly 
energy cost in January (around $122,000) is around 2500 kW (Point B). 
In contrast, there is much less sunshine in winter months such as July 
and the retail price of electricity is much higher (see Fig. A.1 of the 
Appendix). Consequently, achieving the lowest net monthly energy cost 
in July requires a much larger PV capacity of around 4500 kW (Point C). 
Note that the lowest net monthly energy cost for July (around $165,000) 
is much higher than that for January. This indicates the importance of a 
year-round simulation for system optimisation. 

Fig. 15. Variation of net annual energy cost and optimal PV capacity against 
retail electricity price for the smart charging strategy (Case 4). 

Fig. 16. Variation of net annual energy cost against EV charging fee and EV charger capital cost for (a) Case 2 and (b) Case 4.  
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6. Conclusions 

A novel net annual energy cost minimisation method for a campus 
providing public EV charging service has been proposed. The energy 
cost is minimised by optimising the PV capacity for a given EV charging 
strategy. A new modelling approach has been developed to estimate the 
realistic EV charging demand of the campus based on the analysis of the 
vehicle travel data (VISTA) and validated against a real campus parking 
data. The effects of the proposed optimisation method have been tested 
for various EV charging strategies using the actual campus load and PV 
generation data for a year. The results reveal that controlled EV charging 
strategies can lead to reduction in net annual energy cost (net AEC) of 
the campus provided the campus PV capacity is optimised. Under the 
existing billing mechanism and levelized cost of electricity (LCOE), the 
optimal PV capacity is more than double the existing PV capacity of the 
campus. Other key findings of this study are summarized below.  

i. Even with free charging, the deployment of optimised PV capacity 
along with the proposed smart EV charging strategy can reduce the 
net annual energy cost of the campus by 9.2 % for 25 % EV pene-
tration, and by more than 20 % for 100 % EV penetration.  

ii. Because the capacity of optimally sized PV is much larger than the 
existing capacity, the PV generation is much higher and therefore the 
imported energy reduces and exported energy increases. Conse-
quently, the system self-sufficiency is increased, however the system 
self-consumption is reduced. The self-consumption can be increased 
by storing the excess PV energy in on-campus energy storage devices 
and utilised when there is insufficient or no solar irradiation. 

The optimisation framework based on PV capacity sizing and smart 
EV charging control proposed in this study will help achieve decar-
bonization of workplaces and reduction in annual energy cost. The 
proposed models are applicable to any workplace provided the corre-
sponding workplace data are supplied to the optimisation algorithm. 
Future research for sustainable EV charging at workplaces may explore 
the economic benefits of adding on-campus energy storage. The pro-
posed optimisation method will then be adapted to incorporate the en-
ergy storage systems, further reducing the net annual energy cost 
incurred by the energy management system and increasing the direct 
local utilisation of PV. Based on the findings of this study, workplaces 
can support EV charging without necessarily increasing their annual 
energy cost through PV capacity optimisation in conjunction with 
appropriate (smart) charging strategies and tariffs. 
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Appendix  

Table A.1 
Example of UniSA monthly electricity bill for March 2021  

Item Charges Usage Unit Price (λ) Loss Factor (ηls) Total 

Retail Charges 
1 PPPT 717,345.600 kWh λ1 = 10.4753 c/kWh 1.05384 $79,189.86 
2 PPPT Admin Fee 717,345.600 kWh λ2 = 0.2250 c/kWh 1.05384 $1700.93 
Environmental Schemes 
3 LRECs1 717,345.600 kWh λ3 = 0.6621 c/kWh 1.05100 $4991.77 
4 SRECs2 717,345.600 kWh λ4 = 1.1146 c/kWh 1.05100 $8403.31 
5 REPS3 717,345.600 kWh λ5 = 0.2830 c/kWh 1.05100 $2133.62 
Network Charges 
6 HVAD4 – Peak 331,400.400 kWh λ6 = 4.1400 c/kWh  $13,719.98 
7 HVAD – Off Peak 387,222.000 kWh λ7 = 2.5900 c/kWh  $10,029.05 
8 HVAD – Summer Demand 1508.080 kVA λ8 = 21.4800 c/kVA/Day  $10,042.00 
9 HVAD - Demand 2351.160 kVA λ9 = 10.3600 c/kVA/Day  $7550.99 
10 HVAD - Fixed Charges 31 Days λ10 = 41.0959 $/Day  $1273.97 
Market Operator Charges 
11 AEMO5 Market Fee 717,345.600 kWh λ11 = 0.0368 c/kWh 1.05100 $277.45 
12 AEMO Market Fee 31 Days λ12 = 0.3633 c/day 1.00000 $0.11 
13 AEMO Ancillary Fee 717,345.600 kWh λ13 = 0.2450 c/kWh 1.05100 $1847.13 
Metering Charges 
14 Meter Charge  λ14 = 900.00 $/mtr/pa  $76.44 

1 LRECs – Large-Scale Renewable Energy Certificates. 
2 SRECs – Small-Scale Renewable Energy Certificates. 
3 REPS – Retailer Energy Productivity Scheme. 
4 HVAD – High Voltage Business Annual Demand. 
5 AEMO – Australian Energy Market Operator.  

Table A.2 
Academic calendar of UniSA 2021  

Schedule Semester – 1 Semester – 2 

Teaching period – 1 Teaching break Teaching period – 2 Teaching period – 1 Teaching break Teaching period – 2 

Time 1 Mar - 11 Apr 12 Apr − 23 Apr 24 Apr – 18 Jun 26 Jul – 19 Sep 20 Sep – 1 Oct 2 Oct – 10 Nov  

Fig. A.1. Monthly PPPT price (λ1) for 2021  

Off PeakPeak Charges
Off Peak Charges Off Peak

Summer Demand Charges Summer

Workday

Non-Workday

Anytime Demand Charges Anytime

Off PeakPeak

Midnight Midnight7 am 5 pm 9 pmLocal time

Nov – Mar

Fig. A.2. Tariff structure of the Network Charges from the bill in Table A.1.  

Fig. A.2 shows that, for workdays, the energy consumed during 7 a.m.–5 p.m. is charged at the peak rate (item 6 in Table A.1) and the energy 
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consumed outside these hours is charged at the off-peak rate (item 7). The off-peak charge applies to the non-workday. The Summer Demand charge 
(item 8) applies during 5 p.m.–9 p.m. for the months of November–December. At other times during these summer months and during the entire 
months of January–October, the Anytime Demand charge (item 9) is applicable. 
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